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Abstract. A relationship between Kolmogorov’sDKp(r) and generalizedDGp(r) structure
functions of odd orders is suggested and tested. The approach is based on scaling considerations
for a two-scale structure functionD2Gp(l, r) introduced in this paper. It is shown that forr from
the inertial subrange, the relationship betweenDKp(r) andDGp(r) is linear which implies identity
between scaling exponents obtained fromDKp(r) andDGp(r). We also show thatD2Gp(l, r)

provides more information about turbulence structure thanDKp(r) or DGp(r) which are special
cases ofD2Gp(l, r).

1. Introduction

In 1941 Kolmogorov introduced the structure function as a tool to study small-scale turbulence
(Monin and Yaglom 1975, Frisch 1995). He defined the longitudinal structure function as

DKp(r) = 〈1u(r)p〉 (1)

where1u(r) = [u(x + r) − u(x)] is the velocity increment between two points lying on
thex-axis and separated by distancer, p is the order of the structure function, and angular
brackets define averaging over many points. Forr from the inertial subrange of scales (i.e.,
much less than the external flow scale and much larger than the scale where dissipation occurs)
Kolmogorov’s initial theory (referred to hereafter as K41) predicts the following relationship
for the velocity structure function:

DKp(r) = cpε̄p/3rξ(p) (2)

where the constantscp are presumed to be ‘universal’,ε̄ is the mean energy dissipation, and
ξ(p) = p/3. The deviation of measured exponentsξ(p) from p/3 (especially profound for
largep) has inspired revisions of K41 which incorporate intermittency in the velocity, vorticity,
and/or dissipation fields (Vainshteinet al1994, Frisch 1995). The first revision was suggested
by Kolmogorov himself in 1962 and now it is known as the refined Kolmogorov’s hypotheses
or as K62 (Monin and Yaglom 1975, Frisch 1995). In general, the revised expression for the
velocity structure function in the inertial subrange can be presented as

DKp(r) = c∗pε̄p/3Lp/3−ξ(p)0 rξ(p) (3)

where the definition of exponentsξ(p) depends on the particular intermittency model,L0 is
the external turbulence scale (e.g., integral scale), and thec∗p is a new set of constants related
to cp ascp = c∗p(L0/r)

p/3−ξ(p). Relationships (2) and (3) are derived from phenomenological
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considerations except for the third-order longitudinal structure function which Kolmogorov
derived rigorously from the Navier–Stokes equation, i.e.

DK3(r) = − 4
5 ε̄r. (4)

Equation (4) is widely used as a kind of ‘boundary condition’ on theories of turbulence (to be
acceptable, such theories must satisfy (4), or explicitly violate the assumptions made to derive
it, Frisch (1995)). Until recently, Kolmogorov’s structure functions have been used directly as
tools for testing various intermittency models. Recently, Benziet al(1993a, b) have introduced
a new concept known as extended self-similarity (ESS). According to this concept, the scaling
is significantly better if data are presented as

DKp(r) = mp|DK3(r)|ξ∗(p) (5)

where themp are constants independent ofr, DK3(r) = 〈1u(r)3〉, andξ ∗(p) is assumed to
be equal toξ(p). Benziet al (1993a, b) have also suggested that relationship (5) be valid for
moments of the absolute values of velocity increments, i.e.

DGp(r) = m∗pDξ∗∗(p)
G3 (r) = m∗∗p |DK3(r)|ξ∗∗∗(p) (6)

whereDGp(r) = 〈|1u(r)|p〉 are the so-called generalized structure functions,m∗p andm∗∗p are
new sets of constants, andξ ∗(p) = ξ ∗∗(p) = ξ ∗∗∗(p) are assumed. The latter equalities are
only valid if |DKp(r)| ∝ DGp(r), which is automatically true for even integer orders, but for
oddp the situation is unclear. To support the validity of (6) with related assumptions, Benzi
et al(1993b) presented an empirical relationship between|DK3(r)|andDG3(r)which appeared
to be linear for a wide range of scales and for various flows (their analysis was restricted to the
third-order structure functions only). However, Herweijer (1995), and Sreenivasan and Dhruva
(1998) have presented somewhat different results, claiming that the relationship between
|DK3(r)| andDG3(r) is slightly nonlinear (i.e.DG3(r) ∝ |DK3(r)|1.05) which automatically
means invalidity of the equalityξ ∗(p) = ξ ∗∗(p) = ξ∗∗∗(p). Also, Vainshtein and Sreenivasan
(1994) found empirically thatξ ∗(p) > ξ ∗∗(p) for oddp, while Arneodoet al (1996) pointed
out that the difference between exponentsξ ∗(p), ξ ∗∗(p), andξ ∗∗∗(p) for p = 6 is about 10%.

The initial reason to introduceDGp(r) for scaling considerations was technical rather than
theoretical. An example of the typical justification is ‘that it is statistically more stable than
DKp(r)’ (Benziet al1993b, p 277). However, in a later work, Vainshteinet al(1994) have used
the generalized structure functionsDGp(r) as a theoretical tool to build a general model which
connects exponents for the structure functions with multifractal exponents for the vorticity
and dissipation fields. In their derivation, Vainshteinet al (1994) have also assumed that the
equalityξ ∗(p) = ξ ∗∗(p) = ξ ∗∗∗(p) is valid (although the authors recognized the fact that
for oddp this equality still awaits justification). At present, Kolmogorov’s and generalized
structure functions are often used (rather implicitly) as interchangeable functions although
Kolmogorov’s initial ideas and derivations (e.g., relationships (2)–(4)) relate only toDKp(r),
and not toDGp(r). In this paper we present an attempt to clarify a relationship betweenDKp(r)

andDGp(r) and to identify the prefactor in this relationship.

2. Scaling considerations

Let us introduce a two-scale generalized structure functionD2Gp(l, r):

D2Gp(l, r) = 1

Nn

N(l)∑
j

∣∣∣∣ n(l)∑
i

1u(r)
p

i

∣∣∣∣
j

(7)

whereN(l) is the number of equal and non-overlapping subsets of the lengthl, l > r,n(l) = l/r
is the number of velocity increments within a subset, andN(l)n(l) is the total number of
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velocity increments in the total velocity record of the lengthλ = Nl = Nnr. The lengthλ is
presumed to be sufficiently large. For even orders, as follows from (7), there is no difference
betweenD2Gp(l, r),DGp(r), andDKp(r), i.e.D2Gp(l, r) ≡ DGp(r) ≡ DKp(r). However, for
odd orders the situation is different. Kolmogorov’s and generalized structure functions of odd
orders follow from (7) as special (extreme) cases ofD2Gp(l, r), i.e.

D2Gp(l = r, r) ≡ DGp(r) when l = r (8)

and

D2Gp(l = λ, r) ≡ |DKp(r)| when l = λ. (9)

From (7) it also immediately follows thatDGp(r) > |DKp(r)| for the oddp, or, in general,
DGp(r) > |DKp(r)| for anyp.

The behaviour ofD2Gp(l, r) in the ranger < l < λ is not clear but may potentially
provide important information on turbulence structure, additional to that given byDGp(r) and
DKp(r). Here we consider this problem at the heuristic level only, i.e. using some reasonable
assumptions and scaling considerations. For a fixedr from the inertial subrange (i.e.r � L0)
one should expect that at smalll the functionD2Gp(l, r) will decrease with increase inl. This
is because of the cancellation effect of negative and positive contributions to the internal sums
in (7). Also, for suchl a j th internal sum{∑n(l)

i 1u(r)
p

i }j can be either positive or negative.
Further, at sufficiently largel the cancellation effect should saturate and all the internal sums
in (7) will have the same sign. This leads to the following relationship:

D2Gp(l, r) = 1

Nn

N(l)∑
j

∣∣∣∣ n(l)∑
i

1u(r)
p

i

∣∣∣∣
j

= 1

Nn

∣∣∣∣ N(l)∑
j

{ n(l)∑
i

1u(r)
p

i

}
j

∣∣∣∣ = |DKp(r)|. (10)

Two regimes ofD2Gp(l, r) can be distinguished from the above considerations: (i) a small-
scale range ofl whereD2Gp(l, r) decreases with increase inl; and (ii) a large-scale range where
D2Gp(l, r) does not depend onl andD2Gp(l, r) ≡ |DKp(r)|. There should be a characteristic
scaleL that separates these two regimes. The scaleLmay depend onp and is clearly different
from the integral turbulence scaleL0 as it characterizes long-term correlations between velocity
increments. Thus, our first hypothesis assumes the existence of regimes (i) and (ii), and the
scaleL. Our second assumption is about regime (i). We postulate that in the ranger 6 l 6 L
the functionD2Gp(l, r) demonstrates scaling behaviour, i.e.

D2Gp(l, r) ∝ l−k(p) (11)

where the scaling exponentsk(p) may be different for differentp. Combining (10) and (11)
one can obtain:

χp(l, r) = D2Gp(l, r)

DGp(r)
=
∑N(l)

j |∑n(l)
i 1u(r)

p

i |j
|∑N(r)

i 1u(r)
p

i |
=
(
l

L

)−k(p)
=
( r
L

)−k(p) ( l
r

)−k(p)
(12)

whereχp(l, r) is the normalized two-scale structure function. Forl = r we get from (12):

N(r)∑
i

|1u(r)p|i =
N(r)∑
i

|1u(r)|pi =
( r
L

)−k(p) ∣∣∣∣ N(r)∑
i

1u(r)
p

i

∣∣∣∣. (13)

Bearing in mind thatDGp(r) = (1/Nr)
∑N(r)

i |1u(r)|pi and |DKp(r)| = (1/Nr)|
∑N(r)

i

1u(r)
p

i |, we can replace (13) by a relationship:

DGp(r) =
( r
L

)−k(p)
|DKp(r)| (14)

which connects Kolmogorov’s and generalized structure functions. Relationship (14) requires
L to be specified. In general, the scaleL may depend onr andp. At this point we are
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interested in ther-dependence ofL rather than in itsp-dependence. To satisfy dimensions
we have to consider two options for ther-dependence of the scaleL: (1) L(p) ∝ r, i.e.,
(r/L)−k(p) = Ap = const does not depend onr (though may depend onp) and, therefore,
ξ ∗(p) = ξ∗∗(p) = ξ∗∗∗(p); and (2)L = const (i.e.,L does not depend onr) that gives from
(5) and (6): ξ ∗∗∗(p) = ξ∗(p) − k(p) = [1 − k(3)]ξ∗∗(p). The first option is much more
realistic forr from the inertial subrange because of the assumed self-similarity of the velocity
increments. Thus, we have from (12) and (14):

χp(l, r) = Ap(l/r)−k(p) = χp(l/r) for l < L (15)

and

DGp(r) = Ap|DKp(r)| (16)

whereAp = γ (p)k(p), andγ (p) = L(p)/r are some (possibly universal) constants.
Finally, the above considerations establish the following relationships betweenD2Gp(l, r),

DKp(r), andDGp(r):

D2Gp(l, r) = DGp(r) =
( r
L

)−k(p)
|DKp(r)| when l = r (17)

and

D2Gp(l, r) =
( r
L

)k(p)
DGp(r) = |DKp(r)| when l > L. (18)

3. Application

To test relationships (15) and (16) we have used the most reliable data from our data set
measured in the Balmoral Irrigation Canal (North Canterbury, New Zealand). The experimental
section was chosen 500 m downstream of the intake and about 350 m above the sediment
pond. The cross-sectional shape of the channel is close to trapezoidal with top width of
6.2–7.0 m and bottom width of 3.5–4.5 m. To minimize side-wall effects, all measurements
were in the central part of the flow. The main hydraulic parameters for the experiments
were: flow rateQ = 5.14 m3 s

−1
; cross-sectional mean velocityUa = 1.05 m s−1; cross-

sectional mean depthHa = 0.78 m; hydraulic radiusR = 0.70 m; depth at the measuring
verticalH = 1.05 m; global Reynolds number Re= UaR/v = 0.74× 106; global Froude
numberFr = Ua/

√
gR = 0.40; and friction velocityu∗ = 6.94 cm s−1 (obtained from

the Reynolds stress measurements). The measurements were conducted using 3D acoustic
Doppler velocimeters (ADV) with the sampling volume 10 cm beneath the transducer (Kraus
et al 1994). The duration of point measurements was 2–20 min with a sampling interval of
0.04 s. The experimental procedure and data analysis are described in detail in Nikora and
Goring (1998a). In our following considerations we use Taylor’s frozen turbulence hypothesis
which has been shown to be valid at distances from the bed larger than 10 cm (Nikora and Goring
1998b). In this paper we report only data obtained from the longest, 20 min, measurements
conducted at 48–50 cm from the bed and 50–52 cm from the water surface. In our analysis we
considered the longitudinal structure functions for longitudinal (downstream) velocities.

Figure 1 shows typical examples of the third-order Kolmogorov’s structure function
normalized with the spatial lagr. For spatial lags less than≈50 cm the function|DK3(r)|/r
is approximately constant, which is indicative of the inertial subrange (as would be expected
from (4), i.e.|DK3(r)|/r = ( 4

5)ε̄, Frisch (1995)). Also, the upper limit of the inertial subrange
is close to the distance from the bed, in agreement with Yaglom (1993). Subsequently, the
normalized two-scale structure functionχp(l/r), relationship (12), has been calculated for the
spatial lagsr less than 50 cm and forp = 3, 5, 7, and 9. Figure 2 shows typical graphs ofχp(l/r)
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Figure 1. The normalized third-order Kolmogorov’s structure function|DK3(r)|/r = f (r). The
flat part of the graph at smallr is indicative of the inertial subrange.

Figure 2. The functionχp(l/r) for p = 3, 5, 7, and 9. Note how experimental points for different
r from the inertial subrange collapse around single lines corresponding to differentp. The slopes
of the lines define the scaling exponents:k(3) = 0.44;k(5) = 0.22;k(7) = 0.12; andk(9) = 0.05.

which can be approximated asχp(l/r) = Ap(l/r)−k(p) whereAp = (r/L)−k(p), in agreement
with (15). In figure 3 we compare relationship (16) (usingAp from figure 2) with measured
Kolmogorov’s and generalized structure functions. As one can see, the agreement is quite
satisfactory. Finally, figure 4 shows a relationship betweenγ (p) andp, which confirms the
assumed dependence ofγ onp, and gives, approximately,γ (p) = 3.8p2.88. This relationship
as well as the reported scaling exponentsk(p) (figure 2) should be taken as a first approximation.
The value ofA3 in our measurements (figure 3) appeared to be close to those which can be
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Figure 3. Comparison of measured Kolmogorov’s and generalized structure functions forp = 3,
5, 7, and 9 with relationship (16) (Ap is taken from figure 2).

Figure 4. Relationship betweenγ andp.

extracted from data presented for the third-order structure functions in Benziet al (1993b)
and Herweijer (1995). This agreement suggests that the exponentsk(p) andγ (p) may be
universal. However, more tests are necessary to confirm this suggestion.

4. Conclusion

In this paper we have suggested and tested the relationship between Kolmogorov’s and
generalized structure functions. We argue that within the inertial subrange they are connected
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linearly, which implies identity between scaling exponents obtained fromDKp(r) andDGp(r).
Small differences between these exponents reported in Vainshtein and Sreenivasan (1994),
Herweijer (1995), Arneodoet al(1996), and Sreenivasan and Dhurva (1998) are most probably
due to statistical variability. We also suggest that more information about turbulence structure
can be extracted using the two-scale structure function (7). The physical interpretation of
the exponentsk(p) introduced in this paper still needs to be developed. We believe that our
approach is of general character and may be useful in fields other than turbulence.
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